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Abstract

3D shape reconstruction from single image has been a
promising research area in recent times. However, most of
the older approaches focus on generating a voxel based rep-
resentation of objects which end up capturing only low res-
olution details due to data sparsity and computation cost
of 3D convolution. More recently, there have been works
on generating meshes of objects which are a more natural
representation of 3D surfaces but these methods are based
on handcrafted geometric losses. We propose an end-to-
end Single Image Conditional GAN (SICGAN) framework
for generating realistic meshes of 3D objects using a sin-
gle RGB image. It consists of a Generator which is based
on Pixel2Mesh and a Discriminator which employs graph
based convolution for processing irregular mesh objects.
Our SICGAN framework can be modified for different Gen-
erator or Discriminator architectures by swapping with cor-
responding modules to achieve high quality mesh recon-
struction. We validate our mesh prediction on ShapeNet,
where we were able to get a slight jump in reconstruction
metrics for single image shape prediction and more realis-
tic looking meshes. Code for our paper is publicly available
at https://github.com/dysdsyd/SICGAN.

1. Introduction

The world around us is in 3D and thus working to-
wards algorithms which help machines understand this in-
herent 3D structure in the world is an important area of re-
search in Computer Vision. Inferring 3D shape from 2D
images has always been an important research direction in
this area. Early works [29, 22] as well as more recent
works [16, 2, 41], explore representations of 3D shapes
by inferring observable 2D properties. 3D shapes can be
represented in many ways. [3, 6, 28, 43] use voxels and
[9, 26, 21, 1, 37, 44] use point clouds to represent 3D struc-
tures. Voxel representation is conceptually simple but needs

* indicates equal contribution

high spatial resolutions to capture fine structures and scal-
ing to these high resolutions is nontrivial. Point Clouds
can represent fine structures without huge number of points
but they don’t explicitly represent the surface of the shape.
Also, extracting a mesh from them for rendering or other
applications requires post-processing. Meshes on the other
hand can explicitly represent 3D shapes and are standard
representations used in graphics applications.

Our work focuses on producing a mesh representation of
the 3D Object using a Conditional Generative Adversarial
Networks (CGANs) [24] framework. There has been exten-
sive research done in the past [20, 12, 15, 39, 10, 25, 33]
to generate meshes from 2D representation of the objects.
However, they all use some handcrafted loss functions for
achieving realistic mesh reconstructions. For instance, [39]
uses surface normal loss to favor smooth surface, an edge
loss to encourage uniform distribution of mesh and a lapla-
cian loss to prevent mesh faces from intersecting each other.
Inspired by [14], it would be preferable to have a framework
to which a high-level goal to make the output realistic could
be specified and the system then would learns an appro-
priate loss function to satisfy this requirement. Generative
Adversarial Networks (GANs) [11] achieve this through its
loss function, a two player minmax game between Gener-
ator G and Discriminator D which encourages G to pro-
duce realistic outputs. Thus, we use a CGAN framework
for generating meshes of 3D objects which will encour-
age the Generator to predict realistic meshes. Prior to
us, GANs have been used to generate voxel representation
[42, 36, 34, 19, 38] but voxel representation has its draw-
backs as mentioned. For our experiments, we use the model
in [39] as our Generator to create 3D meshes and a network
consisting mainly of a Graph Convolution Networks (GCN)
[7, 18, 4] as our Discriminator. Note here that our CGAN
framework is general and apart from the models used by us,
we can plug in any model which is used to produce a mesh
in place of the Generator and similarly for the Discriminator
variants of GCN layers can be used.
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Figure 1. The Generator used (mainly based on [39]) in our CGAN framework

In summary, our main contribution is to propose a gen-
eral CGAN framework which can be used to generate re-
alistic 3D meshes. Additionally, we use the model in [39]
as our Generator and a simple GCN as our Discriminator
and show that this produces comparable and more realistic
meshes.

2. Related Work
Our proposed approach is based on a mixture of two

research areas: 3D Reconstruction and Conditional GANs.
In this section we are going to discuss previous work in the
aforementioned areas.

3D Reconstruction. Reconstructing 3D objects from
color images has been around since the beginning of the
field [30]. In recent years, learning based approaches
have stood out as a major trend. With the advent of deep
neural networks and large scale 3D shape collections, e.g.
ShapeNet [5] and Pix3D [35], deep learning based 3D
shape generation has made great progress.

To represent 3D structure various forms of representa-
tions like voxels [6, 40, 42] and point clouds [9, 21] have
been explored for 3D reconstruction. However, deep voxel
generators are constrained by it’s resolution due to the data
sparsity and computation cost of 3D convolution. Although,
point clouds provides a flexible form of representation due
to high memory efficiency and simple structure, they are not
well suited for posing geometric constraints.

Mesh representations have been widely used in recent
work [39, 10, 25, 33] on generation and reconstruction
tasks. This was possible because of two reasons: 1) Mesh
representation can model fine shape details and is compat-
ible with various geometric regularizers 2) Graph Convo-
lution Networks [18] provides an effective way to process
them.

Our work closely relates to Pixel2Mesh [39], which
deforms a generic pre-defined input mesh using Graph
Convolutions to form 3D structures. We are building up
on that by adding a discriminator D, thereby transforming

the whole system into a Conditional GAN (CGAN) to
achieve better reconstruction. Although we chose a simple
model based on Pixel2Mesh[39], recent advancements over
Pixel2Mesh such as [10, 25], can easily be used as the
generator G since our approach can be generalised to other
3D Reconstruction state-of-the art methods.

Conditional GANs. The adversarial architecture was
first proposed by Goodfellow et al. [11], and its main idea
is to simultaneously train two models, the generator G
and the discriminator D, and make them both stronger in
adversarial learning. GANs under conditional settings have
been extensively used for various tasks in image domain
[14, 24, 27, 31, 45].

3D-GAN [42] applied GAN in learning latent 3D space,
and it can generate 3D voxel models from the latent space
by extending 2D convolution into 3D convolution. Build-
ing upon the work on 3D-GAN, Edward et al. [34] pro-
posed conditional 3D-GAN for generating 3D object from
images, similar work [19] also aimed at generating 3D ob-
jects from images or labels. However, aforementioned mod-
els are based on conditionally generating voxels, which are
usually of low resolution due to the memory constraint on a
modern GPU. Although, there are efforts in the direction to
tackle this using octree representation [36] which allows re-
constructing higher resolution outputs with a limited mem-
ory budget but they are not effective shape representation as
per industrial standards. To avoid these drawbacks, we are
focusing on processing only mesh polygons using GCNs in
both the generatorG and discriminatorD of our 3D-CGAN
pipeline.

3. Methods

3.1. Graph Convolution Network (GCN)

Since we are operating on meshes, we first provide some
background on Graph-based Convolution. GCN [4, 7, 18]
is a neural network that operates on graph. Given a Mesh
M = (V, E ,F) where V , E and F are the vertices, edges
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and feature vectors attached to the vertices of the mesh re-
spectively, a graph convolution for a layer l is defined as:

f l+1
p = w0f

l
p +

∑
q∈N (p)

w1f
l
q (1)

where f lp ∈ Rdl , f l+1
p ∈ Rdl+1 are the feature vectors

on vertex p before and after the convolution, and N (p) is
the neighboring vertices of p;w0 and w1 are the learnable
parameter matrices of dl × dl+1 that are applied to all
vertices. Note that w1 is shared for all edges, and thus (1)
works on nodes with different vertex degrees. Running
convolutions updates the features, which is equivalent as
applying a deformation.

3.2. Network Architecture

Our model is an end-to-end deep learning framework
which takes an image as the input and yields a 3D mesh as
the output. It consists of two major modules: a Generator
(G) and a Discriminator (D).

3.2.1 Generator (G)

We reimplemented the Pixel2Mesh [39] network based on
the implementation given by the Mesh R-CNN [10] code.
Figure 1 illustrates the modified version of Pixel2Mesh
which we used as our Generator. In this implementa-
tion, we used ResNet-50 [13] as our backbone instead of
VGG-16 [32] architecture for pooling perceptual features.
This implementation outperforms the original model due
to a deeper backbone, better training recipe and minimiz-
ing Chamfer on sampled rather than vertex positions. Other
than above mentioned modifications, rest of the implemen-
tation is same as the original paper. Please refer to the orig-
inal paper [39] for a detailed understanding of the architec-
ture.

3.2.2 Discriminator (D)

We implemented a shallow seven layer network which takes
the generated object from G as input and classify whether
the object is real (1) or fake (0). As depicted in the figure
2, it consisted of three graph convolution layers with fea-
tures of size 16, 32 and 64 followed by max pooling and
three linear layer which condenses to a single value and a
sigmoid activation for real vs fake prediction. Our deci-
sion for a shallow network was motivated by the success
of PatchGAN in [39] which models the image as Markov
random field. Similarly, a shallow three layer graph convo-
lution network would have a smaller receptive field of the
mesh topology.

3.3. Objective

Our model is trained using a CGAN framework which
generates objects through adversarial process estimation
conditioned on some prior. CGANs learn a mapping from
observed image x and random noise vector z, to y, G :
{x, z} −→ y. G and D can be regarded as two players of
a min-max game where G is trying to ”fool” D and are
trained jointly. The objective of conditional GAN is stated
as follows:

lcGAN (G,D) =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z))]
(2)

where G tries to minimize this objective against an
adversarial D that tries to maximize it, i.e. G∗ =
arg minG maxD lcGAN (G,D)

Similar to [39], we found that it is beneficial to mix
geometric losses and regularizations with GAN objective.
The Discriminator’s job remains unchanged, but the gen-
erator not only have to fool the discriminator but also be
geometrically similar to the ground truth mesh. To define
geometric closeness, we are going to define losses that we
can apply on mesh objects.

Mesh Losses: Similar to [10] we used differentiable
mesh sampling to sample point clouds on surface of
meshes. Given two pointclouds P,Q with normal vectors,
let ΛP,Q = {(p, arg minq ‖p− q‖) : p ∈ P} be the set
of pairs (p, q) such that q is the nearest neighbor of p in
Q, and let up be the unit normal to point p. The chamfer
distance between pointclouds P and Q is given by

lcham(P,Q) = |P |−1
∑

(p,q)∈ΛP,Q

‖p− q‖2+

|Q|−1
∑

(q,p)∈ΛQ,P

‖q − p‖2
(3)

and the (absolute) normal distance is given by

lnorm(P,Q) = −|P |−1
∑

(p,q)∈ΛP,Q

|up · uq|

−|Q|−1
∑

(q,p)∈ΛQ,P

|uq · up|
(4)

The chamfer and normal distances penalize mismatched
positions and normals between two pointclouds, but mini-
mizing these distances alone results in degenerate meshes
(intersecting faces). High-quality mesh predictions require
additional shape regularizers: To this end we use an edge
loss:

ledge(V,E) =
1

|E|
∑

(v,v′)∈E

‖v − v′‖2 (5)
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Figure 2. The Discriminator model used in our CGAN framework. Consists of a series of Graph Convolution layers followed my max-
pooling and linear layers which output the probability of the 3D mesh generated by the generator being real.

where E ⊆ V × V are the edges of the predicted mesh.
Alternatively, a Laplacian loss llap [8] also imposes smooth-
ness constraints.

The total mesh loss is a weighted sum of all four
losses, lmesh = lcham + λ1lnorm + λ2llap + λ3ledge
where λ1 = 1.6e−4, λ2 = 0.3 and λ3 = 0.1 are the
hyperparameters which balance the losses and fixed for all
the experiments.

Final Objective: Our final objective is

G∗ = arg min
G

max
D

lcGAN (G,D) + λlmesh(G) (6)

As shown in [39, 23], generator simply learned to ignore
the noise which was consistent with our experiments; the
net could still learn a mapping from x to y, but would pro-
duce deterministic outputs, and therefore fail to match any
distribution other than a delta function. This is still an open
research problem, we are going to continue our work in ex-
ploring ways to induce stochasticity in the network.

4. Experiments
We benchmark our predicted meshes on the Table and

Chair classes from ShapeNet [5] and compare our model
with [39].

4.1. Dataset

We use the subset of the ShapeNet [5] dataset provided
by [6] which contains a collection of 3D shapes, represented
as textured CAD models organised into different categories
following the WordNet hierarchy, and their rendered im-
ages. We render each mesh from up to 24 random view-
points, giving RGB images of size 137× 137. We filter out

Chamfer F1τ F12τ

chair Pixel2Mesh [39] 0.00062 55.98 70.27
SICGAN (Ours) 0.00059 56.99 71.35

table Pixel2Mesh [39] 0.00056 66.31 77.53
SICGAN (Ours) 0.00052 68.39 79.48

Table 1. F-score (%) at different thresholds where τ = 10−4

and Chamfer Distance on test set from Shapenet Table and Chair
classes using the evaluation protocol from Pixel2Mesh.[39].

meshes with more than 6000 vertices due to computational
constraints. For the same reason, we only use the models
contained in the Table and Chair classes with a train/val/test
split of size 3500/1000/1000 for our experiments.

4.2. Training and Optimization

To optimize our network, we follow the approach men-
tioned in [39]: we alternate between one gradient de-
scent step on D, then one step on G. As suggested in
the original GAN paper, rather than training G to mini-
mize log(1 − D(x,G(x, z)), we instead train to maximize
logD(x,G(x, z))[11]. In addition, we divide the objective
by 2 while optimizing D, which slows down the rate at
which D learns relative to G. We use minibatch SGD and
apply the Adam solver [17], with a learning rate of 0.001,
and momentum parameters β1 = 0.5, β2 = 0.999.

4.3. Evaluation

We compare our presented approach with Pixel2Mesh
[39], which predicts meshes by deforming and subdividing
an initial ellipsoid. We incorporate changes to made to the
original Pixel2Mesh architecture by MeshRCNN [10] code
for higher computational efficiency and robust feature ex-
traction.
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Figure 3. Comparison of results between Ground Truth, Pixel2Mesh baseline [39] and SICGAN (ours). We see that the meshes produced
by our model look more realistic than the baseline.

We study the effect of using a conditional generative ar-
chitecture on the single-image 3D reconstruction by imple-
menting the following models:

• Pixel2Mesh Baseline: We implement Pixel2Mesh
[39] and use the output mesh directly to minimize the
Chamfer on the sampled points.

• SICGAN Vanilla (ours): We use Pixel2Mesh as the
generator network for predicting meshes. In addition,
we use a shallow GCN with FC layers as a discrimina-
tor to determine whether the predicted meshes are real
or fake.

• SICGAN with random noise (ours): This is the same
as SICGAN Vanilla, except the fact that the output
of the generator is conditioned on additional random
noise z.

We follow the evaluation metrics adopted by recent
works [33, 39]. 10k points are uniformly sampled at
random from the surface of the predicted and ground-
truth meshes, and are used to compute Chamfer distance
(equation 3). We also compute the F1-score using various
distance threshold τ . The harmonic mean of the percentage
of predicted points within τ of the ground-truth point gives
the precision while the vice versa gives the recall. For
F1-score, higher is better, while for Chamfer distance,
lower is better.

From Table 1 we see that both our Vanilla SICGAN
model performs better than the Pixel2Mesh [39] baseline
with respect to both the F-score and the Chamfer distance
metric. Consistent with the observations of [23] and [45] we
observe no change in results when the output from the gen-
erator is conditioned on random noise z which corresponds
to our SICGAN with random noise implementation.

We realize that the evaluation metrics for 3D shape
generation may not thoroughly reflect the shape quality.
The metrics often capture occupancy or point-wise distance
rather than surface properties, such as continuity, smooth-
ness, high-order details. Thus, we show some qualitative
results for better understanding of these aspects in figure
3. We observe that the meshes produced by SICGAN seem
more realistic than those generated using Pixel2Mesh [39].

5. Conclusion

In this paper we outline a new framework, SICGAN,
which is successful in 3D generation from single image. Al-
though we tested our model on a subset of ShapeNet [5], we
were able combine CGAN objective with geometric losses
and regularizers to achieve slightly better reconstruction.
Also, the Generator and Discriminator modules can be re-
placed with different networks to transfer the CGAN frame-
work for other combinations. We then demonstrate this sys-
tem’s generative power by recovering 3D objects from im-
ages, to achieve a slightly better performance on ShapeNet
dataset [5].
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Although, we were not able to add stochasticity in the
network, we will continue to work on finding new ways to
induce randomness in reconstruction such as VAE-CGAN,
graph dropouts, random intial meshes or a combination of
them.
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