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Abstract

Current state-of-the-art pose estimation techniques often
rely on end-to-end trained neural network architectures to
infer a 6-DOF pose. These architectures, while effective,
are computationally expensive and often require a large
number of parameters. Instead, we propose formulating the
pose estimation problem as a differentiable particle filter.
This approach learns a per-particle latent embedding which
infers its respective pose, object likelihood, and re-sampling
objective iteratively. Our proposed method should decrease
the tight coupling between input size and model architec-
ture, and also improve the training and inference time scal-
ability of the network. Furthermore, the proposed approach
allows for reasoning across a distribution of inferred poses
represented by the different particles.

1. Introduction

Computer vision related research communities that at-
tempt to interact with the outside environment - such as
robotics, HCI, and others - require the ability to know the
spatial location and orientation of objects within their sys-
tem’s vicinity. The task of obtaining this information from
an image is known as pose estimation. The determination
of an object pose is necessary for any robotic manipulation
task. Furthermore, these systems are required to be able to
determine the pose of relevant objects in natural environ-
ments that contain difficult conditions such as lighting vari-
ations, partial observations due to clutter, sensor variations,
etc. These difficult conditions often necessitate the use of
belief space planners, which require not just a singular pose
output (which traditionally would represent the highest like-
lihood estimate of, for example, a particle filter), but instead
required a distribution of belief across candidate poses.

We propose formulating the pose estimation problem us-
ing a differentiable particle filter. The proposed method
learns the component functions of a traditional particle fil-
ter, where each component is represented as a multi-layer
Perceptron (MLP), and each task (likelihood, etc.) becomes
a learned function. This approach naively allows the use of
belief space via the distribution of likelihood amongst the

Figure 1. Example of pose-estimation task in cluttered environ-
ment.

candidate particles, but it also allows for increased robust-
ness to occlusions and other natural environment difficul-
ties.

In more technical terms, our proposal is as follows.
Given a color and depth image of an object (which may
potentially be articulated), the system will generate a latent
embedding for a set of randomly sampled particles. This
latent embedding is used to predict per-particle pose, object
likelihood score, and an image space offset. The offset is
used to select new particle patch/pixel inputs which are then
re-evaluated to improve the likelihood estimate of the parti-
cle. After a set number of iterations, a final pose is extracted
from the refined latent embedding as shown in Figure 1.

We intend to address three problems associated with cur-
rent SoTA pose estimators - training time, robustness to
clutter, and ability to reason about belief. Our proposed
method should be more amenable to clutter and occlusions
within the observation space. This improved robustness to
image perturbations should also increase the scalability of
pose estimation techniques by decreasing the computational
and temporal requirements necessary to train a model on
novel rigid-body objects, due to the decreased number of
training data samples required to identify clutter agnostic
features. Additionally, by utilizing a generative inference
method, we would allow roboticists the ability to investi-
gate the confidence of the estimator in various proposed
poses, thus allowing for the use of higher quality manip-
ulation techniques in downstream pipelines.
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2. Related Work

There have been several works that demonstrate the abil-
ity of neural networks to predict the pose of rigid body ob-
jects in the RGB and RGB-D domains such as PoseCNN,
DOPE, and PoseRBPF [7][9][2]. While these techniques
are useful, they are all styled after an end-to-end neural
network, and thus possess certain limitations. In partic-
ular, they all are of fixed input image size, possess zero
or limited ability to reason about belief, and all require
extremely large/diverse training datasets necessitating high
training time. It is important to note that while PoseRBPF
does allow for a certain amount of reasoning about belief,
it only permits it within a small number of axes. This rea-
soning about belief, however, is extremely important when
manipulating certain objects such as screwdrivers, pencils,
etc. which all possess high degrees of radial symmetry, but
whose pose about the symmetric axis may be extremely im-
portant to the objects’ manipulation task. In contrast to
these approaches, our generative inference based proposal
maintains a joint belief across all six pose axes.

Other works such as NOCS seek to perform pose esti-
mation on categorical instances of objects [8]. Our pro-
posed method here does not explicitly address the notions
of categorical pose estimation, and we leave its extension
to a future project. However, the NOCS and other simi-
lar systems still retain the drawbacks inherent in end-to-end
trained neural networks, including lack of ability to reason
about belief, and large training dataset requirements.

There do exist some works that are explicitly targeted
at performing belief space estimation of object pose [5].
Many of these works, however, maintain a reliance on a
CAD model of the relevant objects, which not only hurts
their ability to be extended to other objects, but also hinders
their run-time performance (as manipulations of the CAD
model can be computationally expensive or memory ineffi-
cient).

3. Proposed Method

We propose a collection of networks work in concert to
both update their own latent state, as well as to make a final
prediction. The proposed approach is analogous to a par-
ticle filter, with the likelihood and update functions being
learned via neural networks as proposed in [3]. It repre-
sents a unique avenue of research allowing for the inference
and training time speed benefits of neural network based ap-
proaches, along with the belief space reasoning abilities of
historical generative inference approaches.

Our proposed set of networks work in three phases: ini-
tialization, refinement, and prediction. Given an image and
a set of 2D coordinates we refer to as particles, the network
initializes its internal latent parameters, then iteratively re-
fines them by integrating the latent representations with sec-

Figure 2. Example of pixel visitations for single particle across
three iterations.

tions of the image that particles point to. Through this pro-
cess, a well taught system could navigate the image by care-
fully propagating particles and building an understanding of
possible poses of objects particles encounter as well as those
poses’ their likelihoods. This pipeline is depicted in figure
3 and described in more detail below.

Initially, our networks are intialized with a zero latent
vector and a zero offset for each particle. Given an RGB-
D image and particles, the network offsets the particles and
extracts a pixel or a patch from the image at the current
particle locations. The extracted patch is concatenated with
its associated latent vector and then passed through a multi-
layer perceptron (MLP) to produce an updated latent vector.

The new latent representations encode image features
collected from different locations that the particle visited.
Particle motion is not constrained allowing the latent vector
to encode features of arbitrary Euclidean distance in pixel
space. Each particle accumulates information from differ-
ent locations linking image features in a form akin to a dy-
namic graph. Latent features are then processed by a pair
of MLP layers to produce a pose and a likelihood estimate.
All of the pose vectors, likelihood vectors, and their corre-
sponding latent vector are concatenated and processed by a
final MLP that predicts the best next offset. With knowledge
of the object, this offset could direct a particle towards the
next image location that would elucidate the predicted pose,
or it could propel that particle into an undiscovered region
if data indicates that an object is not likely in the investi-
gated location. With that new offset prediction, the network
is ready to undergo another iteration.

For a set number of iterations, the network is allowed to
refine its latent information before a final set of pose and
likelihood predictions are produced.

For training, pose estimates are compared to ground truth
poses using ADD loss on transformed object meshes. YCB
and FAT data sets provided object meshes and ground truth
poses for objects in every image. Although ADD-S loss is
superior for supervising pose estimation of symmetric ob-
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Figure 3. This image depicts the initial network architecture.
Green blocks identify pieces of data , orange rectangles are multi-
layer Perceptron networks, and the plus signs indicate concatena-
tion. The network data is initialized to trivial values.

jects, ADD is sufficient for objects with a lower degree of
symmetry and distinct color patterns. For training, an ini-
tial version of the network objects with no symmetric color
patterns is used for simplicity.

4. Experiments
In this section, we will discuss the data we used, how

we evaluated our system, and the different abstractions of
particle filters that we have devised to find an object pose in
an RGBD image. We have mainly experimented with three
levels of particle filter which use information derived from
pixels or patches of pixels.

The main rendition of the network used 1000 particles
spread uniformly over the image. The particle filter is run
for 10 iterations. A latent vector is set to have 256 param-
eters. All MLP networks were configured with 4 layers of
512 input and output dimensions each. Our MLP networks
sequentially stacked linear, batch normalization, and ReLU
for every added layer.

4.1. Data and Setup

We utilized two different datasets in an attempt to
demonstrate the capabilities of our proposed method. We
used the FaT (Falling Things) dataset from [6], which
presents a collection of photorealistic rendered scenes from
the YCB object set [1]. Those datasets were intended to
serve as a starting point for the demonstration and initial
buildup of our technique. Additionally, the dataset from [5]
presented a more complex challenge which we wanted to
use to show edge, failure, and outsized-success cases. The
latter dataset contains significantly more clutter and is real-
world data (as opposed to simulated), so it would be able to
show practical generalizability as well.

Experiments were judged using three primary evalu-
ation metrics. The first was parts-based bounding-box
intersection-over-union (typically referred to as Jaccard
Similarity). Secondarily, the ADD and ADD-S matching
scores utilized in [7] were presented for comparison pur-

poses. These scores represent the average 1-1 correspon-
dence distances between the vertices of the object mesh at
its ground truth and estimated poses. The primary differ-
ence between ADD and ADD-S scores being that ADD-S
has a slightly different formulation to allow for idempotent
poses to have the same output score. The equation for ADD
is given in (1) and the equation for ADD-S is given in (2).
While ADD-S would ultimately be used to accommodate
the highly symmetric objects in our data sets, the simpler
ADD was used in our initial tests on objects with distinct
colors to further verify that color, as well as the depth, is
contributing to our results.

m(Pgt, P̂ ) =
1

N
∑

(pgt,p̂)∈(Pgt,P̂ )

||p̂− pgt|| (1)

msym(Pgt, P̂ ) =
1

N
∑
p̂∈P̂

min
pgt∈Pgt

||p̂− pgt|| (2)

Lastly, we perform ablation studies on the effect of the
number of particles initialized and the number of iteration
for the particle filter versus the performance of our proposed
approach.

4.2. Pose From Pixels

As the network can propagate its own particles around
and accumulate information, we started by exploring the
use of a single-pixel to inform our latent updates. At ev-
ery iteration, a single RGB-D pixel was concatenated with
the latent vector.

Results After training our network with this setup were
not promising. A memorization experiment, using a single
object category and testing on training data, showed that
the network failed to converge to any meaningful pose. By
plotting the progression of particles over time we noticed
that all particles were moving in one direction and away
from any object. The result was deemed random and hence
encouraged some changes to the network.

4.3. Pose From Patches

Since surveying a pixel at a time failed to provide suffi-
cient information, we hypothesized that integrating a patch
at a time into the latent vector could improve results. We
extract patches around the pixel locations at every iteration
to achieve this objective. These patches are flattened and
appended with pixel locations and prior latent vector in-
formation. The resultant vector was fed through the same
MLP based pipeline. Patches of sizes 3× 3, and 6× 6 were
tested, as bigger patches would likely demand an additional
encoder layer to process and condense the patch into a fea-
ture. We initially train the network by maximising the in-
tersection between the ground truth segmentation mask of
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Figure 4. Patches of size 9 × 9 are initialized as particles for performing a detection task for the cracker box in the frame. A convolution
network is used for detecting the offset at each iteration which is supervised using l2 distance between the particle and ground truth mask.

the object, M and the particle patch, P . We supervise the
model use a binary cross entropy loss formulated as follows:

lbce =
1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi))

(3)
where,

yi =

{
1, if i ∈M ∩ P

0, otherwise
(4)

and p(yi) is the predicted likelihood of the patch.
While testing, the number of particles used was varied

between 50 and 100. The particle filter was run for a 100
iterations to test each of the patch sizes. We evaluated mod-
els trained using both BCE loss and ADD loss to compare
the meshes transformed using the ground truth and the pre-
dicted object poses.

After testing while using random initialization, we at-
tempted to inform our sampling method while training. As
demonstrated by [4] especially when the number of positive
samples is small, sampling particles mainly on or around the
objects of interest could greatly benefit learning.

Results We observe that overfitting experiments using
BCE loss resulted in particles being offset towards image
edges. We theorize this might be caused by the large im-
balance between the positive and negative samples during
loss calculation. The objective function learns to optimize
by minimizing the loss contributed negative samples rather
than maximizing the intersection between the ground truth
mask and particle patch. To tackle that we tried to initialize
a portion of the particles on or around the object but that did
not render better results.

In addition, similar memorization experiments on a
model trained using ADD loss were run to predict the pose
of a scene with a single object and it was observed yet again
that the network was not producing sufficient outcomes.
The network acted unpredictably and learned to move par-
ticles in some random direction. Since we failed to see a

pattern in the motion of the particles, we concluded that the
image patches were still not a sufficient source of informa-
tion.

4.4. Using an Image Patch as Particle Filter

After the failure of our previous experiments with parti-
cles initialized on pixels and patches, we decided to narrow
down our experiment to just detect the object in the frame by
running a small convolution neural network on patches of
size 9×9. These patches can now be considered as particles
initialized randomly in the pixel domain and a small con-
volution network with three Conv-Batchnorm-ReLU blocks
are used to extract features and output three values – offsets
(x and y) and likelihood.

For our experiment, we initialize 50 patches (particles)
of size 9× 9 and updated the offsets iteratively for 30 itera-
tions to reach towards the object similar to previously men-
tioned experiments. To supervise the particles we used a
variant of chamfer distance between the 9×9 particle patch
and ground truth mask patch of the object. We define the
chamfer distance for the two patches P,Q ∈ RN∗×4 where
N∗ is the number of pixels in the corresponding patch with
ΛP,Q = {(p, arg minq ‖p− q‖) : p ∈ P} be the set of pairs
(p, q) such that q is the nearest neighbor of p in Q, as:

lcham(P,Q) = |P |−1
∑

(p,q)∈ΛP,Q

‖p− q‖2+

|Q|−1
∑

(q,p)∈ΛQ,P

‖q − p‖2
(5)

The chamfer distance lcham minimizes the distance be-
tween the closest neighbors in the two patches, effectively
forcing the model to maximize the overlap between the two
patches.

Results Similar to section 4.2 we ran a memorization
experiment (using a single object category and testing on
training data) to detect the object using the patches as par-
ticle filter with a shared convolution network to learn the
offsets to travel toward the object boundaries. However, as
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shown in figure 4, we saw that particles are not yet converg-
ing at the object in the frame. There are mostly two kinds
of patterns that we are seeing with this method: 1) Either
the particles line up along an arbitrary axis 2) or they get
accumulated at a corner of the frame.

4.5. Downsized Image for Patch as Particle Filter

After observing those unsatisfactory particle motion pat-
tern in section 4.4 while using a 9 × 9 convolution kernel
we decided to examine whether having our kernel consume
a larger portion of the object would facilitate its ability to
learn how the object looks and thus its ability to better char-
acterize it. While increasing the complexity of the feature
extractor and kernel size could serve a similar purpose, we
elected to conserve our kernel size to maintain a reasonable
run-time. Images downsized to 160 resolution were tested
using the same pipeline detailed in 4.4. We limited our test
set to a single category (cheez-it crackers boxes) which has
distinct color patterns thus sparing us from having to deal
with issues associated with highly symmetric objects. We
tested the networks ability to detect the object using the
chamfer distance loss as outlined in 5.

Results Although we effectively increased the receptive
field of the patch with some information loss due to resizing,
the model gave similar results as those in section 4.4.

5. A New Methodology: Pose-Space Learned
Likelihood Particle Filter

In the interest of attempting a new approach that may
yield something approximating success, a new learned-
likelihood particle filter method was developed inspired by
occupancy networks [4].

In this new method, each particle represents a pose
hypothesis. Each pose hypothesis coordinate frame is
projected into the u,v space of the image and a se-
ries of randomly selected u’, v’ pixels are selected from
a two-dimensional Gaussian distribution centered around
the proposed pose. These pixels are fed through the
camera projection matrix to yield a series of points(
x y z r g b

)
world

world, which is then multi-
plied by the proposed pose’s transform to yield a point(
x y z r g b

)
object

which represents a hypothet-
ical observation within the relevant object’s coordinate
frame. This

(
x y z r g b

)
object

is then fed into a
neural network model M whose architecture is described
in table 5. This neural network then returns a scalar value
which represents the likelihood of that pixel/point’s obser-
vation conditioned on the proposed pose. The likelihood
is then taken to be the sum of all likelihoods for each(
x y z r g b

)
object

point. This function is other-
wise couched within a typical re-sample/perturb/re-weight

Layer # Layer Type Input Size Output Size
1 Linear 6 128
2 ResnetFC 128 128
3 ResnetFC 128 128
4 ResnetFC 128 128
5 ResnetFC 128 128
6 ResnetFC 128 128
7 Linear 128 1

Table 1. Table describing the layers used in the learned likelihood
particle filter model

particle filter loop with 1000 candidate particles/poses and
ran for 100 iterations.

To train the network, 30
(
x y z r g b

)
object

samples are taken along the epipolar ray for each segmen-
tation map pixel member within the original FAT train-
ing data-set, with the starting location being placed 10cm
from the camera’s focal plane, and the ending location be-
ing placed 5cm beyond the observed pixel/point. Generated(
x y z r g b

)
object

samples farther than 1cm away
from object’s surface towards the observer is assigned ran-
dom r,g,b values and are assigned a label of 0.0, as these
are deemed to be possible occlusions, and therefore nei-
ther contribute to nor falsify the proposed pose. Generated(
x y z r g b

)
object

samples farther than 1cm away
from the object’s surface away from the observer are also
assigned random r,g,b values, but are assigned a label of -
100.0, as these interior points are not valid occlusions, and
therefor falsify the proposed pose. Samples within ± 1cm
of the objects generate 2 new training instances. In one
instance, the observed r,g,b value is retained with a label
of +100.0 (indicating a highly likely observation). For the
other instance, a training sample is generated with a random
r,g,b value with a label of 0.0, as such an observation may
be considered a valid occlusion. The resulting model M is
analogous to an occupancy network, but instead of simply
returning ± 1.0 depending on if a point lies within the ob-
ject bounds, it instead indicates if a point is a confirming or
falsifying point cloud observation.

5.1. Results

Unfortunately, this approach did not yield a positive re-
sult - the final maximal likelihood poses did not correspond
to the expected ground truths even remotely close enough
to justify the reporting of ADD or ADD-S metrics. This
was confirmed to be due to the lack of fine-tuning of the
likelihood model. Although hand inspection of individual
points on a sample scene produced values as to be expected
(see figure 5), for some test data scenes, the MVE found by
the particle filter was discovered to have a higher likelihood
than the ground truth value. It is likely that a more princi-
pled approach to training the likelihood model could yield
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Figure 5. A pair of example samples of the likelihood field output.
Subfigure 5 indicates a point on the surface of the object, which
yielded a likelihood value of +95.77. Subfigure 5 indicates a point
not on the surface of the object, which yielded a likelihood value
of -115.43.

fruit - one the forgoes human tuned labels in favor of learned
or inferred ones. However, such an approach was perhaps
beyond the scope of this exercise’s time constraints.

6. Future Direction
From our current set of experiments, it has become ev-

ident that it would be very difficult to estimate the pose of
the object just by using solely the local context of the par-
ticles. Since our particle placement is stochastic in nature
while placing them on the pixel plane, it becomes very diffi-
cult for the particle to estimate the pose let alone detect the
object. Currently, all of our experiments are unsuccessful to
estimate pose using particle filter in pixel domain. However,
in the future we are thinking of pursuing other directions to
estimate pose using particle filter:

• Using global context as used in [2] followed by particle
sampling to have the right mix of both global and local
context.

• Separate the pipeline and train it in parts. By train-
ing the likelihood and pose detection networks on

pre-labeled segmentation inputs, a greater exposure of
known-good labels should improve the later end-to-
end training process. Additionally, having a known-
good local likelihood function should improve the abil-
ity for the motion update network to detect object pix-
els in the relevant region of the image.

• Using a portion of a pre-trained ResNet to extract fea-
tures from our image patches. Our latent vector, parti-
cle motion predictor, and likelihood predictor critically
rely on retrieving descriptive features. Relying on a
well-tested encoder could improve our ability to train
the other portions of the network.

• Augment re-sampling with a global prediction of re-
gion relevance. We saw that particles that away from
the object itself lack the global context that would in-
form their motion and guide them to the object. If par-
ticles were re-sampled based on how likely they are to
predict an object pose or how likely they are to be sam-
pling features from the object, we could avoid having
to deal with training random particles to find the object
of interest.
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