
The Impact of the Image Feature Detector and
Descriptor Choice on Visual Odometry Accuracy

Chunkai Yao1, Danish Syed1, Joseph Kim2, Peerayos Pongsachai2, and Teerachart Soratana3

Abstract—Building a fully autonomous mobile robotic system
is a difficult task, which requires accurate sensors and techniques
for localization and mapping. One such techniques is Visual
Odometry (VO), which uses stereo or monocular camera sensors
to estimate the poses of a vehicle. The goal of this project
was to implement VO and to analyze the accuracy of the
localization when using different combinations of descriptor and
detector. Simulation results were obtained by analyzing 10 KITTI
dataset sequences, with Relative Pose Error (RPE), Absolute
Trajectory Error (ATE) and runtime in term of frames per
second (FPS) as evaluation metrics. Comparison of RPE and ATE
for each combination of descriptor and detector were obtained
as heatmap. Outliers in RPE and error accumulation in ATE
were discussed, and future work were suggested for conclusive
analysis as benchmark. Code of our report is publicly available
at https://github.com/dysdsyd/VO benchmark.

Index Terms—Visual Odometry, SLAM, Mobile robotics, Com-
puter vision, Descriptors, Detectors, Convolution Neural Network

I. INTRODUCTION

Significant progress has been achieved in the area of mobile
robotics. Advancement in both hardware and software have
made such system a safe and reliable technology. For such
systems, making robots understand the world and recognize /
distinguish what they see has become an important research
area. Furthermore, localization and mapping have become a
central technology in the perception and state estimation of
mobile robotics. In this paper, we recapped relative techniques
used in monocular visual odometry (VO) to determine the
position and orientation of a vehicle with pre-existing KITTI
dataset [1]. Then, we implemented and compared different
feature descriptors to compare their performances using Rel-
ative Pose Error (RPE), Absolute Trajectory Error (ATE) and
runtime.

The structure of this paper is organized as follows: section II
discuss existing techniques in VO, and detector and descriptor
algorithms. Section III discuss the details of techniques we
implemented for performance evaluation. Section IV discuss
about the results of the evaluation. Section V summarize the
conclusions of the performance evaluation and discussed what
we can improve in the future.

1 Chunkai Yao and Danish Syed are with Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, USA
nickyao@umich.edu and dasyed@umich.edu

2 Joseph Kim and Peerayos Pongsachai are with Robotics Institute,
University of Michigan, Ann Arbor, USA jthkim@umich.edu and
ppongsa@umich.edu

3 Teerachart Soratana is with Department of Industrial and Operations Engi-
neering, University of Michigan, Ann Arbor, USA tsorat@umich.edu

II. BACKGROUND

For a robot to autonomously track its path, and detect /
avoid any obstacles, localization is the fundamental technique
for the pose estimation. Below are the descriptions of VO, and
of detection and descriptor algorithms for data acquisition and
transformation estimation.

A. Visual Odometry (VO)

VO is a pose estimation on a moving agent with cam-
era video inputs [2]. By analyzing sequence of images in
camera, VO incrementally estimates the position (translation
and rotation with respect to a reference frame) of a vehicle.
The idea first came out in the early 1980s [3], and VO was
extensively researched in NASA, preparing Mars Mission in
2004 [4], [5]. They found that VO is an inexpensive application
with some of distinct advantages like functionality in GPS-
denied environment, no slippage effect in uneven terrain, light-
weight and simple to integrate with other computer vision
based algorithms. Thus, VO has become an alternative to
conventional localization method such as wheel odometry,
GPS, INS, sonar localization, etc [5]. Particularly, VO is one
of the robust techniques to do such localization, known to
have a relative position error of 0.1 to 2% [5]. To provide the
comparison, Table I below briefly summarizes pros and cons
of different localization techniques.

Furthermore, it is noteworthy to distinguish the difference
between VO and Simultaneous Localization and Mapping
(SLAM). In VO, primary objective is to estimate the pose of
the vehicle by incrementally taking the camera input and by
maintaining local consistency between the sequential frames.
In contract, the objective of SLAM is to update the unknown
map environment incrementally, and use this updated map to
estimate the pose of vehicle in the newly acquired map data.
In this sense, SLAM maintains globally consistent estimation
of the trajectory. Figure 1 below illustrates the high-level
overview of VO and SLAM.

VO is broadly classified as two categories (i.e. stereo vision,
monocular vision) based on the types of camera used in
position estimation. In our interest of VO with image feature
detectors, we restrict our scope to the monocular VO, but the
generality is not lost. However, it is worth noting the main
performance difference between stereo and monocular cameras
used in VO. In stereo camera, depth information and image
scale is relatively easy to obtain, but requires more calibration
effort than monocular cameras, and also can be more costly
and difficult in terms of interfacing. In contrast, monocular
camera is low cost, low weight, and simpler to implement,

https://github.com/dysdsyd/VO_benchmark


TABLE I
COMPARISON OF DIFFERENT LOCALIZATION TECHNIQUES

Techniques Pros Cons
Global Positioning System (GPS) Error does not accumulate over time Cannot operate indoor or underwater

Wheel Odometry Cheap and simple way to estimate position / orientation error accumulates over time
Laser High accuracy and high scan rate Expensive, and subject to reflection in object surface

Visual Sensor Based Odometry High accuracy and low cost Relatively high computational cost

Fig. 1. Schematics of VO (top) and SLAM (bottom).

requiring less effort in calibration. Monocular camera is par-
ticularly suitable for micro/small robots. However, monocular
vision has a drawback of uncertainty in image scaling.

B. Detector and Descriptor Algorithms

In traditional visual SLAM or VO systems, visual data
association tools are used to keep track of objects within key
frames for camera localization. These tracking tools consist
of a detector to identify keypoints, a descriptor to characterize
the keypoints and mathematically represent the features, and
a matching algorithm to compare found features of different
frames [6].

Detection algorithms identify keypoints in the image and
keep track of these features between keyframes. This method
of data association and tracking takes significant computa-
tional power if done for every frames. To fix this issue,
detector algorithms often utilize keyframe method of tracking
data for some selected frames and disregard the rest to ease
computational burden [2]. Typical detector tools like the ORB
created short-term and mid-term data association of features
in the keyframes by creating association map of the tracked

elements. This association is done on pixel level in order to
track the visual elements over time [7].

A common feature tracking algorithm, Shi-Tomasi [8], was
one of the detector algorithms used in this project. Shi-
Tomasi tracks features in camera frames based on dissimilarity
of the image’s affine changes. The algorithm calculates the
feature’s affine transformation using Newton-Raphson stile
minimization procedure and determine a dissimilarity between
the previous and current frame to disregard features with high
dissimilarity. Additionally, the algorithm selects features that
optimize the detector’s accuracy to track, thereby maximizing
the detector’s accuracy [8].

Descriptor algorithms extract a vector attribute that rep-
resent the interested pixel extracted by the detector. The
association of features by descriptors enable feature trans-
formation between frames to be determined [6]. For many
descriptors, this process is done on pixel level and using
mathematically models. As such, many descriptor algorithms
are computationally intensive.

Instead of describing the features on pixel-levels, some
descriptors utilize neural network methods as an alternative
method of classifying and tracking visual elements [7]. Unlike
traditional tracking tools, neural network based algorithms are
not susceptible to error accumulation that is the result of
keyframe tracking. Neural network tools can identify visual
elements based on trained data and track these elements over
time, allowing for mid-term and long-term data association
[7].

III. METHODOLOGY

A. Visual Odometry

The project was based on the pySLAM v2 implementation
[9]. In monocular VO pose estimation, feature points were
sequentially detected at least in three consecutive frames in
order to observe / confirm the features, and then calculated the
transformation (rotation and translation) between the frames.
The procedure of monocular VO with three minimum consec-
utive frame analysis in pySLAM v2 is described below:

• Select number of features to detect and track
• Choose feature tracker configurations (i.e. SIFT, SUPER-

POINT, BRISK, etc)
• Create VO object with camera calibration, ground truth

data and feature tracker
• Process first image by extracting regional / augmented

features, and keypoints
• Process consecutive frames

2



– Track / extract features by using specified detector
and descriptors, and match the keypoints

– Estimate the relative poses among three consecutive
frames by using five-point algorithm [10] (i.e. esti-
mate the Essential matrix in normalized image co-
ordinates), and use RANSAC to refine the matches,
and estimate the transformation.

– calculate current translation scale from ground-truth
to obtain inter-frame scale

– Update the history: reference / current keypoints and
descriptors

– Repeat the process for every iteration

B. Detector and Descriptor Selection

In this project, we conducted a study with descriptor and
detector combinations as our independent variable. There were
30 combinations between detectors and descriptors in total.

1) Group 1: Common detector-descriptors: Based on the
literature review on visual odometry, we chose 5 common
detectors and 5 common descriptors and assigned them to
group 1. In this group, all of the detectors and descriptors
were matched together to form a detectors-descriptors pair,
except for SIFT-ORB2 pair which did not run in the code.
5 detectors are: BRISK [11], FAST [12], ORB2 [13], SHI-
TOMASI [8], and SIFT [14]. 5 descriptors are: BRISK [11],
ORB2 [13], SIFT [14], TFEAT [7], and no descriptor (using
optical flow method such as Lucas-Kanade (LK) [15]). A total
of 24 combinations belong to this group. Note that the ORB2 is
the detector and descriptor from ORB-SLAM2 implementation
[13] which used a different Bag-of-Words implementation
comparing to ORB features [16].

2) Group 2: ORB2 with deep-learning descriptors: In the
second group, we want to evaluate the performance of the
method that uses ORB2 as detector and neural network al-
gorithm to extract the features. We chose HARDNET [17],
L2NET [18], SOSNET [19], and VGG [20] as the descriptors.
A total of 4 combinations belong to this group.

3) Group 3: End-to-end deep-learning VO: In the third
group, we run the evaluation on a few end-to-end neural
network methods. End-to-end method refers to algorithm that
uses its default pipeline to function as both detector and
descriptor. In our evaluation, we have SUPERPOINT [21] and
D2NET [22] as the end-to-end method. These methods were
chosen because both were designed to find correspondence
between two frames, and thus can function as both detector
and descriptor. A total of 2 combinations belong to this group.

C. Evaluation Metrics

We obtained estimated trajectory: P1, . . . , Pn ∈ SE(3),
ground truth trajectory: Q1, . . . , Qn ∈ SE(3), and fixed time
interval ∆. We introduced ATE and RPE for evaluation [23].

1) ATE: To calculate ATE, the first step is to find the rigid-
body transformation S mapping the estimated trajectory
P1:n onto the ground truth trajectory Q1:n. We calcu-
lated ATE by:

Fi := Qi
−1SPi (1)

2) RPE: We defined the relative pose error at time step i
as:

Ei := (Qi
−1Qi+∆)−1(Pi

−1Pi+∆) (2)

For both errors, we computed the root mean squared
error (RMSE) to evaluate the overall performances of
different feature combinations we tested. Cumulative
RMSE is computed by

RMSE =

√√√√√√√√
J∑

j=1

Nj∑
i=1

(xpij − xoij)2

J∑
j=1

Nj

(3)

Here, we have xp denotes the predicted value and xo as
observed value (i.e. ground truth). j denotes each KITTI
sequences, Nj denotes the number of observation for the
jth KITTI sequence, and i denotes each predicted frame.
Pooled standard deviation is computed using equation 4

sdpooled =

√√√√√√√√
J∑

j=1

(Nj − 1)sd2
j

J∑
j=1

(Nj − 1)

(4)

3) Runtime: Runtime was evaluated by running each
detector-descriptor combinations on KITTI dataset se-
quence 00. This sequence contains 4541 images, and
each image is a gray scale image of size 1241 X 376
pixel. The average frame per second (FPS) and its
standard deviation were used as runtime metric.

D. Implementation and Running

In practice, we tested on 30 different detector-descriptor
combinations. For each test, we used the same detector-
descriptor combination for estimating pose and trajectory on
10 different sequences. This strategy was chosen to eliminate
the effect that one combination worked particularly well or
bad for one specific dataset and that performance was not
representative.

Fig. 2. Video output during VO evaluation

In Figure 2, during the evaluation process, the evaluation
software matches the interest points detected from two images
of the same scene. The green lines visualize the transforma-
tions between matched features.

3



Fig. 3. Combined output during evaluation. It shows real-time trajectory
visualization in 2-D (top-right) and 3-D (bottom-left), translation error (center-
left) and number of matches (blue) and inliers (green) (bottom-right).

While we were performing the evaluation, we output the
plots in Figure 3 to monitor the performance of our VO.
The windows in top-right and bottom-left provided real-time
trajectory visualization in both 2-D and 3-D. The window in
the center showed runtime errors for x, y and z axis. Also, the
window in the bottom-right indicated the number of matches
and inliers between each consecutive frame.

In order to match the format we want for evaluation, we
converted rotation and translation matrix into SE(3). We took
estimated trajectory in SE(3) and ground truth as inputs to
compute the ATE and RPE. Our evaluations relied on an open
source evaluation tool named evo [24]. RPE and ATE were
then computed for all 30 combinations.

IV. RESULTS

A. RPE

The results for RPE indicated that SIFT-SIFT performed
best out of all other combinations, followed by BRISK-BRISK
pair. High standard deviation in RPE indicated that there were
many outliers. Out of 300 evaluations (from 10 sequences for
each of the 30 combinations), 291 (97%) of the evaluations
has the mean higher than the median, which indicated that
the normal behavior of RPE in VO would generally contains
occasional high error frames. Out of the 9 evaluations with
mean lower than the median, 7 of them was from KITTI
dataset sequence 01, which is a free way drive scenario.

In KITTI dataset sequence 01, out of 30 combinations
between detector and descriptor evaluated, 27 (90%) of the
combinations has the highest RPE in this sequence out of all
other KITTI sequences in 00 - 09. This might be due to its
free way driving scenario where there are little fiducials on
the road side comparing to other scenario, which makes it
challenging to perform VO. There are also moving cars in the

same direction at the similar speed, or in the opposite direction.
SIFT-SIFT pair performed the best in this scenario compared
to all other combinations, followed by BRISK-BRISK.

Our results also indicated that using optical flow method
(specifically LK method) in place of a descriptor yield consis-
tently good results in FAST, ORB2, and SHI-TOMASI detec-
tor. As for ORB2 detector with deep-learning descriptor, we
found that L2NET and SOSNET paired with ORB2 performs
relatively better than with HARDNET and VGG with ORB2.
End-to-end deep-learning performed relatively well comparing
to ORB2 with deep-learning.

The estimated trajectory plots of SIFT-SIFT combination
and of SHI-SIFT combination with RPE value at particular
pose are shown in Figure 6 and 8 respectively. The colored
bars on the right side of the plots are the labels of the RPE
values at each pose. As shown in the trajectory plots, the SIFT-
SIFT combination performs VO very well and the SHI-SIFT
combination has a terrible performance.

The plots of RPE for each frame, shown in Figure 7
and 9 for SIFT-SIFT combination and SHI-SIFT combination
respectively, show that there are many outliers in the RPE
values. Figures 7 and 9 show the outliers as sudden spikes
in the RPE values. Figure 7 shows relatively small number
of outliers, illustrating the reason for low pooled standard
deviation value for the SIFT-SIFT combination. On the other
hand, Figure 9 shows large number of outliers causing the
RMS value of RPE and value of pooled standard deviation to
be high for SHI-SIFT case.

In order to evaluate the data and investigate the cause
of spikes in RPE plots, we looked at the real-time plot of
number of matches and inliers which are the real-time output
of pySLAM code. Figure 3 shows an example of the output
of the pySLAM code with the plot of pose error, estimated
trajectory, and plot of number of matches and inliers for
each frame. We attempted to find correlation between the
number of matches and inliers, and the value of RPE at the
same frame. We identified the frame that resulted in sudden
changes in the RPE value and tried to observe if there are any
significant changes in the number of matches and inliers at
that frame. However, we did not find any correlation between
number of matches and inliers, and the sudden increases in
RPE. We observed that there are certain frames in the KITTI
data that causes the sudden increases in RPE across many
detector-descriptor combinations. Even so, we cannot make
any conclusive remarks regarding the cause of the sudden
spikes in RPE values observed in Figure 7 and 9.

B. ATE

The ATE value is the lowest for SIFT-SIFT combination
followed by BRISK-BRISK combination, which is consistent
with the results for RPE. The combination with the highest
ATE is the SHI-SIFT combination as seen in Figure 10.
Furthermore, the error values for Group 3, end-to-end deep-
learning tools, are lower than error of Group 2, ORB2 with
deep-learning features. The result indicated that using LK in
place of a descriptor yield relatively low ATE values in SIFT,

4



Fig. 4. Heatmap of Relative Pose Error (RPE) across different combinations
of detectors and descriptors. (Green/ orange / red indicates low / medium /
high error). Lower error means better performance.

Fig. 5. Heatmap of Relative Pose Error (RPE) standard deviation across
different combinations of detectors and descriptors. (Green/ orange / red
indicates low / medium / high error). Lower error means better performance.

Fig. 6. Trajectory Plot with Relative Pose Error (RPE) of SIFT-SIFT in KITTI
dataset 04

ORB2, and SHI-TOMASI detectors. Moreover, L2NET and
SOSNET paired with ORB2 yields relatively lower error than
HARDNET and VGG with ORB2.

Comparing the trajectory plots with the ATE results for each
combination confirms that lower ATE values indicate better
VO performance. The combination with the lowest ATE, SIFT-
SIFT, has a trajectory plot with very low deviation from the
ground truth, as seen in Figure 7. Likewise, the combination
with highest ATE, SHI-SIFT, has a trajectory plot that greatly
deviated from the ground truth, seen in Figure 9. Since low
ATE values suggest better VO performance, the result seems
to indicate that SIFT-SIFT combination performed the best at
VO compared to the other chosen combinations. The ATE
values of SIFT-SIFT and BRISK-BRISK combinations are

Fig. 7. Relative Pose Error (RPE) of SIFT-SIFT in KITTI dataset 04

Fig. 8. Trajectory Plot with Relative Pose Error (RPE) of SHI-SIFT in KITTI
dataset 00

Fig. 9. Relative Pose Error (RPE) of SIFT-SIFT in KITTI dataset 04

lower than error values of deep-learning tools like D2NET
and SUPERPOINT, suggesting that these combinations have
better VO performance than deep-learning tools.

Figure 11 shows that the standard deviation values of the

5



ATE are high relative to the cumulative root mean square
values of ATE. The reason for high relative standard deviation
was due to the error accumulating over time. Figure 12 shows
how the ATE value increases for subsequent frames, resulting
in high standard deviation for each trajectory. As such, the
pooled standard deviation of each combination across the 10
trajectories is relatively high and is close to the cumulative
root mean square value of ATE.

Fig. 10. Heatmap of Absolute Trajectory Error (ATE) across different
combinations of detectors and descriptors. (Green/ orange / red indicates low
/ medium / high error). Lower error means better performance.

Fig. 11. Heatmap of Absolute Trajectory Error (ATE) standard deviation
across different combinations of detectors and descriptors. (Green/ orange / red
indicates low / medium / high error). Lower error means better performance.

Fig. 12. Absolute Trajectory Error (ATE) of SIFT-SIFT in KITTI dataset 04

C. Runtime Metrics

The results of runtime calculation indicated that BRISK-
BRISK combination has the best average FPS with its standard
deviation. Also, neural network based descriptor-detector com-
binations performed worse compared to classical ones. This

matches our expectation as neural networks takes significantly
more computation time and resources. As for the descriptor,
using LK algorithm yield overall high frame rate in group 1.

Fig. 13. Heatmap of Average FPS across different combinations of detectors
and descriptors. (Green/ orange / red indicates High / medium / low FPS).
Higher FPS means better performance.

Fig. 14. Heatmap of FPS standard deviation across different combinations of
detectors and descriptors. (Green/ orange / red indicates low / medium / high
standard deviation). Lower standard deviation means consistent performance.

V. CONCLUSIONS

The result demonstrates that SIFT-SIFT combination, fol-
lowed by BRISK-BRISK, performed the best at visual odom-
etry compared to other chosen combinations and end-to-end
deep-learning tools. Superpoint performs better than deep-
learning descriptor combined with ORB2 based on our choice
of deep-learning descriptor-detector. The SHI-SIFT combina-
tion had the worst performance out of the chosen combina-
tions.

Taking runtime into account, the BRISK-BRISK combi-
nation is the best out of the chosen combinations. While
SIFT-SIFT performance is the best, its runtime makes it
unappealing for live implementation of VO. Additionally, our
implementation of ORB2 using pySLAM had relatively slower
frame rate compared to the frame rate of the BRISK detector.

The project was based on the pySLAM in python. We
simplified the implementation for our visual odometry. In the
future, we can explore more features of slam and visual odom-
etry by comparing our results to more sophisticated ones like
stereo VO, Omnidirectional VO [25], and C++-based ORB-
SLAM. Our current result shows generally classical computer
vision features do a better job than deep-learning features. It
is possible to introduce more features like CenterNet [26] and
check if more recent deep-learning feature combinations could
have better results or not. Additionally, the experiment could
be run using other dataset to confirm that the result is valid
for any dataset. Lastly, loop closer could be implemented for
more accurate pose estimation.

6



REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[2] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D. Tardós,
“Orb-slam3: An accurate open-source library for visual, visual-inertial
and multi-map slam,” arXiv preprint arXiv:2007.11898, 2020.

[3] H. P. Moravec, “Obstacle avoidance and navigation in the real world
by a seeing robot rover.” Stanford Univ CA Dept of Computer Science,
Tech. Rep., 1980.

[4] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2004. CVPR 2004., vol. 1. Ieee, 2004, pp.
I–I.

[5] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[6] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using
invariant features,” International journal of computer vision, vol. 74,
no. 1, pp. 59–73, 2007.

[7] R. Kang, J. Shi, X. Li, Y. Liu, and X. Liu, “Df-slam: A deep-learning
enhanced visual slam system based on deep local features,” 2019.

[8] Jianbo Shi and Tomasi, “Good features to track,” in 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 1994,
pp. 593–600.

[9] L. Freda and M. Pierenkemper, “pyslam v2,” https://github.com/
luigifreda/pyslam, 2019.

[10] H. Li and R. Hartley, “Five-point motion estimation made easy,” in
18th International Conference on Pattern Recognition (ICPR’06), vol. 1.
IEEE, 2006, pp. 630–633.

[11] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[12] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cremers,
“Visual-inertial mapping with non-linear factor recovery,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 422–429, 2019.

[13] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[14] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the seventh IEEE international conference on computer
vision, vol. 2. Ieee, 1999, pp. 1150–1157.

[15] B. D. Lucas, T. Kanade et al., “An iterative image registration technique
with an application to stereo vision.” Vancouver, British Columbia,
1981.

[16] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. Ieee, 2011, pp. 2564–2571.

[17] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard
to know your neighbor’s margins: Local descriptor learning loss,” arXiv
preprint arXiv:1705.10872, 2017.

[18] Y. Tian, B. Fan, and F. Wu, “L2-net: Deep learning of discriminative
patch descriptor in euclidean space,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 661–
669.

[19] Y. Tian, X. Yu, B. Fan, F. Wu, H. Heijnen, and V. Balntas, “Sosnet:
Second order similarity regularization for local descriptor learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11 016–11 025.

[20] K. Simonyan, A. Vedaldi, and A. Zisserman, “Learning local feature
descriptors using convex optimisation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 8, pp. 1573–1585, 2014.

[21] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” in Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, 2018, pp. 224–236.

[22] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and
T. Sattler, “D2-net: A trainable cnn for joint detection and description
of local features,” arXiv preprint arXiv:1905.03561, 2019.

[23] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 573–580.

[24] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

[25] P. Corke, D. Strelow, and S. Singh, “Omnidirectional visual odometry
for a planetary rover,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
vol. 4. IEEE, 2004, pp. 4007–4012.

[26] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” in arXiv
preprint arXiv:1904.07850, 2019.

7

https://github.com/luigifreda/pyslam
https://github.com/luigifreda/pyslam
https://github.com/MichaelGrupp/evo

	Introduction
	Background
	Visual Odometry (VO)
	Detector and Descriptor Algorithms

	Methodology
	Visual Odometry
	Detector and Descriptor Selection
	Group 1: Common detector-descriptors
	Group 2: ORB2 with deep-learning descriptors
	Group 3: End-to-end deep-learning VO

	Evaluation Metrics
	Implementation and Running

	Results
	RPE
	ATE
	Runtime Metrics

	Conclusions
	References

